CURVES: Curve evolution for vessel segmentation

نویسندگان

  • Liana M. Lorigo
  • Olivier D. Faugeras
  • W. Eric L. Grimson
  • Renaud Keriven
  • Ron Kikinis
  • Arya Nabavi
  • Carl-Fredrik Westin
چکیده

The vasculature is of utmost importance in neurosurgery. Direct visualization of images acquired with current imaging modalities, however, cannot provide a spatial representation of small vessels. These vessels, and their branches which show considerable variations, are most important in planning and performing neurosurgical procedures. In planning they provide information on where the lesion draws its blood supply and where it drains. During surgery the vessels serve as landmarks and guidelines to the lesion. The more minute the information is, the more precise the navigation and localization of computer guided procedures. Beyond neurosurgery and neurological study, vascular information is also crucial in cardiovascular surgery, diagnosis, and research. This paper addresses the problem of automatic segmentation of complicated curvilinear structures in three-dimensional imagery, with the primary application of segmenting vasculature in magnetic resonance angiography (MRA) images. The method presented is based on recent curve and surface evolution work in the computer vision community which models the object boundary as a manifold that evolves iteratively to minimize an energy criterion. This energy criterion is based both on intensity values in the image and on local smoothness properties of the object boundary, which is the vessel wall in this application. In particular, the method handles curves evolving in 3D, in contrast with previous work that has dealt with curves in 2D and surfaces in 3D. Results are presented on cerebral and aortic MRA data as well as lung computed tomography (CT) data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Differential Equations applied to Medical Image ‎Segmentation

‎This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...

متن کامل

Combined evolution of level sets and B - spline curves for imaging

We propose the evolution of curves in direction of their unit normal using a combined implicit and explicit spline representation according to a given velocity field. In the implicit case we evolve a level set function for segmentation and geometry reconstruction in 2D images. The level set approach allows for topological changes of the evolving curves. The evolution of the explicit B-spline cu...

متن کامل

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

Riemannian Drums, Anisotropic Curve Evolution and Segmentation

The method of curve evolution is a popular method for recovering shape boundaries. However isotropic metrics have always been used to induce the flow of the curve and potential steady states tend to be difficult to determine numerically, especially in noisy or low-contrast situations. Initial curves shrink past the steady state and soon vanish. In this paper, anisotropic metrics are considered ...

متن کامل

Level-Set Segmentation of Arterial and Venous Vessels based on ToF-SWI data

INTRODUCTION Non-invasive quantitative assessment of the cerebral vasculature is of high diagnostic and therapeutic interest. Prerequisite for quantitative description of blood vessels is voxel-wise classification of angiographic data sets into vessel and non-vessel structures. Among the vast of algorithms suitable for vessel segmentation [1, 2] the level-set technique has been established as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2001